수학

2D to 3D shape reconstruction with statistical model

Small Octopus 2016. 9. 22. 22:16

1. 2D shape 과 3D model의 mean shape 사이의 닮음변환(scale, Rotation, Translation)을 구한다.

2. mean shape을 2D shape으로 닮은변환 후 z 값만 2D shape에 추가한다. -> 2Dz shape.

while

3. 2Dz shape을 3D mean shape으로 닮음변환 한다.

4. ShapeParam = Basis*(2Dz shape -mean shape ) , 두 shape의 차이를 Basis에 투영한다.

5. 3Drecon = mean shape + Basis*ShapeParam, 투영된 값을 다시 복원한다.

6. sR(:,1:2)*2D shape +T와 3Drecon의 차를 -sR(:,3)과 내적하여 z을 갱신한다.

7.  2D shape + z -> 2Dz shape, 원래 2D shape에 z 값만 추가하여 2Dz shape을 갱신한다.

8. 2Dz shape을 3Drecon 으로 닮음 변화 후 오차를 구한다.3D -> 3D

9. 오차가 작거나 정해진 반복횟수를 넘으면 종료 아니면 3으로 가서 반복한다.


10. ShapeParam을 구했다. z을 평균 z넣어주고 투영 재건, 재건된 z을 넣어주고 닮음 변환 다시 찾고 

즉 , z <-> similarity. 반복

11. 2Dz shape을 3Drecon 으로 닮음변환의 역변환을 구한다.

12. ShapeParam과 닮음변환을 3D model에 적용하여 reconstruction한다.