The Beautiful Future
caffe solver 본문
*base_lr
*display : if 3 then interval iter = 3 * average_loss(default 1)
Display the loss averaged over the last average_loss iterations
* test_iter
# of validation set / validation batch size , The number of iterations between two testing phases.
* test_interval
how often you validate..... usually for large nets you set test_interval in the order of 5K
*max_iter
# of epochs * # of train data / # of train batch size
*iter_size
this allows to average gradients over several training mini batches
*stepsize
learning rate decay step
*lr_policy
fixed: always return base_lr
step : retrun base_lr * gamma^(floor(iter/stepsize)
exp : return base_lr * gamma^iter
inv : return base_lr * ( 1+gamma*iter)^-power
multistep : similar to step but it allows non uniform steps defined by stepvalue
poly : the effective learning rate follows a polynomial decay, to be zero by the max_iter.
return base_lr * ( 1 - iter/max_iter) ^ power
sigmoid : the effective learning rate follows a sigmoid decay
return base_lr * ( 1/(1 + exp(-gamma*(iter-stepsize))))
*solver_type
SGD, NESTEROV, ADAGRAD, RMSPROP, ADADELTA, ADAM
http://caffe.berkeleyvision.org/tutorial/solver.html
'DNN' 카테고리의 다른 글
Install Caffe on Windows8.1 64bits, Visual studio 2013, CUDA7.5, cuDNN5.1, Anaconda 4.3.0 (0) | 2017.03.06 |
---|---|
Install Caffe on Ubuntu 16.04 with GTX 1080, CUDA8.0, CUDNN5.1, NCCL, OPENCV3.1 (0) | 2016.11.24 |
[TensorFlow] TensorFlow Mechanics 101 (0) | 2016.10.26 |
caffe console command train graph (0) | 2016.10.24 |
tensor flow add op (0) | 2016.10.05 |