The Beautiful Future
cuda covari matrix 본문
refer : http://stackoverflow.com/questions/29670548/covariance-calculation-with-cuda
Your code does not make any sense to me.
Covariance calculation in CUDA can be easily performed by using cuBLAS in conjunction with Thrust. Considering N
realizations of K
random variables, the covariance estimation formula is the following
where qjk
, j,k=1,...,K
are the covariance estimate values, Xj
and Xk
with the overbars
are the random variable means as estimated from the available realizations.
Below, I'm reporting a fully worked example:
#include <cublas_v2.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/reduce.h>
#include <thrust/functional.h>
#include <thrust/random.h>
#include <thrust/sequence.h>
#include <stdio.h>
#include <iostream>
#include "Utilities.cuh"
#include "TimingGPU.cuh"
/*************************************/
/* CONVERT LINEAR INDEX TO ROW INDEX */
/*************************************/
template <typename T>
struct linear_index_to_row_index : public thrust::unary_function<T,T> {
T Ncols; // --- Number of columns
__host__ __device__ linear_index_to_row_index(T Ncols) : Ncols(Ncols) {}
__host__ __device__ T operator()(T i) { return i / Ncols; }
};
/********/
/* MAIN */
/********/
int main()
{
const int Nsamples = 3; // --- Number of realizations for each random variable (number of rows of the X matrix)
const int NX = 4; // --- Number of random variables (number of columns of the X matrix)
// --- Random uniform integer distribution between 10 and 99
thrust::default_random_engine rng;
thrust::uniform_int_distribution<int> dist(10, 99);
// --- Matrix allocation and initialization
thrust::device_vector<float> d_X(Nsamples * NX);
for (size_t i = 0; i < d_X.size(); i++) d_X[i] = (float)dist(rng);
// --- cuBLAS handle creation
cublasHandle_t handle;
cublasSafeCall(cublasCreate(&handle));
/*************************************************/
/* CALCULATING THE MEANS OF THE RANDOM VARIABLES */
/*************************************************/
// --- Array containing the means multiplied by Nsamples
thrust::device_vector<float> d_means(NX);
thrust::device_vector<float> d_ones(Nsamples, 1.f);
float alpha = 1.f / (float)Nsamples;
float beta = 0.f;
cublasSafeCall(cublasSgemv(handle, CUBLAS_OP_T, Nsamples, NX, &alpha, thrust::raw_pointer_cast(d_X.data()), Nsamples,
thrust::raw_pointer_cast(d_ones.data()), 1, &beta, thrust::raw_pointer_cast(d_means.data()), 1));
/**********************************************/
/* SUBTRACTING THE MEANS FROM THE MATRIX ROWS */
/**********************************************/
thrust::transform(
d_X.begin(), d_X.end(),
thrust::make_permutation_iterator(
d_means.begin(),
thrust::make_transform_iterator(thrust::make_counting_iterator(0), linear_index_to_row_index<int>(Nsamples))),
d_X.begin(),
thrust::minus<float>());
/*************************************/
/* CALCULATING THE COVARIANCE MATRIX */
/*************************************/
thrust::device_vector<float> d_cov(NX * NX);
alpha = 1.f;
cublasSafeCall(cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, NX, NX, Nsamples, &alpha,
thrust::raw_pointer_cast(d_X.data()), Nsamples, thrust::raw_pointer_cast(d_X.data()), Nsamples, &beta,
thrust::raw_pointer_cast(d_cov.data()), NX));
// --- Final normalization by Nsamples - 1
thrust::transform(
d_cov.begin(), d_cov.end(),
thrust::make_constant_iterator((float)(Nsamples-1)),
d_cov.begin(),
thrust::divides<float>());
for(int i = 0; i < NX * NX; i++) std::cout << d_cov[i] << "\n";
return 0;
}
'스킬' 카테고리의 다른 글
파일로드 std::string 사용 (0) | 2016.06.30 |
---|---|
[ubuntu] file list (0) | 2016.06.20 |
cuda svd (0) | 2016.05.31 |
우분투 윈도우 하드디스크 연동 (0) | 2016.04.28 |
Dir 명령어로 파일리스트 만들기 (0) | 2016.04.11 |
Comments