The Beautiful Future

mtl format 본문

Graphics

mtl format

Small Octopus 2018. 12. 27. 19:59

MTL material format (Lightwave, OBJ)

Excerpt from FILE FORMATS, Version 4.2

October 1995

Documentation created by: Diane Ramey, Linda Rose, and Lisa Tyerman

Copyright 1995 Alias|Wavefront, Inc.

All rights reserved




--------------------------------------------------------------------------------



 

5.  Material Library File (.mtl)

 

 Material library files contain one or more material definitions, each 

of which includes the color, texture, and reflection map of individual 

materials.  These are applied to the surfaces and vertices of objects.  

Material files are stored in ASCII format and have the .mtl extension.

 

 An .mtl file differs from other Alias|Wavefront property files, such as 

light and atmosphere files, in that it can contain more than one 

material definition (other files contain the definition of only one 

item).

 

 An .mtl file is typically organized as shown below.

 

 

  newmtl my_red

  Material color

  & illumination

  statements

 

  texture map

  statements

 

  reflection map

  statement

 

  newmtl my_blue

  Material color

  & illumination

  statements

 

  texture map

  statements

 

  reflection map

  statement

 

  newmtl my_green

  Material color

  & illumination

  statements

 

  texture map

  statements

 

  reflection map

  statement

 

  Figure 5-1.  Typical organization of .mtl file

 

 

 Each material description in an .mtl file consists of the newmtl 

statement, which assigns a name to the material and designates the start 

of a material description.  This statement is followed by the material 

color, texture map, and reflection map statements that describe the 

material.  An .mtl file map contain many different material 

descriptions.

 

 After you specify a new material with the "newmtl" statement, you can 

enter the statements that describe the materials in any order.  However, 

when the Property Editor writes an .mtl file, it puts the statements in 

a system-assigned order.  In this chapter, the statements are described 

in the system-assigned order.

 

 

 Format

 

 The following is a sample format for a material definition in an .mtl file:

 

 // Material name statement:

  newmtl my_mtl

 

 // Material color and illumination statements:

  Ka 0.0435 0.0435 0.0435

  Kd 0.1086 0.1086 0.1086

  Ks 0.0000 0.0000 0.0000

  Tf 0.9885 0.9885 0.9885

  illum 6

  d -halo 0.6600

  Ns 10.0000

  sharpness 60

  Ni 1.19713

 

 // Texture map statements:

  map_Ka -s 1 1 1 -o 0 0 0 -mm 0 1 chrome.mpc

  map_Kd -s 1 1 1 -o 0 0 0 -mm 0 1 chrome.mpc

  map_Ks -s 1 1 1 -o 0 0 0 -mm 0 1 chrome.mpc

  map_Ns -s 1 1 1 -o 0 0 0 -mm 0 1 wisp.mps

  map_d -s 1 1 1 -o 0 0 0 -mm 0 1 wisp.mps

  disp -s 1 1 .5 wisp.mps

  decal -s 1 1 1 -o 0 0 0 -mm 0 1 sand.mps

  bump -s 1 1 1 -o 0 0 0 -bm 1 sand.mpb

 

 // Reflection map statement:

  refl -type sphere -mm 0 1 clouds.mpc

 

 

 Material Name

 

 The material name statement assigns a name to the material description.

 

 Syntax

 The folowing syntax describes the material name statement.

 

  newmtl name

 

 Specifies the start of a material description and assigns a name to the 

material.  An .mtl file must have one newmtl statement at the start of 

each material description.

 

  "name" is the name of the material.  Names may be any length but 

cannot include blanks.  Underscores may be used in material names.

 

 

 Material color and illumination

 

 The statements in this section specify color, transparency, and 

reflectivity values.

 

 Syntax

 The following syntax describes the material color and illumination 

statements that apply to all .mtl files.

 

 

  Ka r g b

  Ka spectral file.rfl factor

  Ka xyz x y z

 

 To specify the ambient reflectivity of the current material, you can 

use the "Ka" statement, the "Ka spectral" statement, or the "Ka xyz" 

statement.

 

 Tip These statements are mutually exclusive.  They cannot be used 

concurrently in the same material.

 

 Ka r g b

 

 The Ka statement specifies the ambient reflectivity using RGB values.

 

 "r g b" are the values for the red, green, and blue components of the 

color.  The g and b arguments are optional.  If only r is specified, 

then g, and b are assumed to be equal to r.  The r g b values are 

normally in the range of 0.0 to 1.0.  Values outside this range increase 

or decrease the relectivity accordingly.

 

 Ka spectral file.rfl factor

 

 The "Ka spectral" statement specifies the ambient reflectivity using a 

spectral curve.

 

 "file.rfl" is the name of the .rfl file.

 "factor" is an optional argument.

 "factor" is a multiplier for the values in the .rfl file and defaults 

to 1.0, if not specified.

 

 Ka xyz x y z

 

 The "Ka xyz" statement specifies the ambient reflectivity using CIEXYZ 

values.

 

 "x y z" are the values of the CIEXYZ color space.  The y and z 

arguments are optional.  If only x is specified, then y and z are 

assumed to be equal to x.  The x y z values are normally in the range of 

0 to 1.  Values outside this range increase or decrease the reflectivity 

accordingly.

 

 

  Kd r g b

  Kd spectral file.rfl factor

  Kd xyz x y z

 

 To specify the diffuse reflectivity of the current material, you can 

use the "Kd" statement, the "Kd spectral" statement, or the "Kd xyz" 

statement.

 

 Tip These statements are mutually exclusive.  They cannot be used 

concurrently in the same material.

 

 Kd r g b

 

 The Kd statement specifies the diffuse reflectivity using RGB values.

 

 "r g b" are the values for the red, green, and blue components of the 

atmosphere.  The g and b arguments are optional.  If only r is 

specified, then g, and b are assumed to be equal to r.  The r g b values 

are normally in the range of 0.0 to 1.0.  Values outside this range 

increase or decrease the relectivity accordingly.

 

 Kd spectral file.rfl factor

 

 The "Kd spectral" statement specifies the diffuse reflectivity using a 

spectral curve.

 

 "file.rfl" is the name of the .rfl file.

 "factor" is an optional argument.

 "factor" is a multiplier for the values in the .rfl file and defaults 

to 1.0, if not specified.

 

 Kd xyz x y z

 

 The "Kd xyz" statement specifies the diffuse reflectivity using CIEXYZ 

values.

 

 "x y z" are the values of the CIEXYZ color space.  The y and z 

arguments are optional.  If only x is specified, then y and z are 

assumed to be equal to x.  The x y z values are normally in the range of 

0 to 1.  Values outside this range increase or decrease the reflectivity 

accordingly.

 

 

  Ks r g b

  Ks spectral file.rfl factor

  Ks xyz x y z

 

 To specify the specular reflectivity of the current material, you can 

use the "Ks" statement, the "Ks spectral" statement, or the "Ks xyz" 

statement.

 

 Tip These statements are mutually exclusive.  They cannot be used 

concurrently in the same material.

 

 Ks r g b

 

 The Ks statement specifies the specular reflectivity using RGB values.

 

 "r g b" are the values for the red, green, and blue components of the 

atmosphere.  The g and b arguments are optional.  If only r is 

specified, then g, and b are assumed to be equal to r.  The r g b values 

are normally in the range of 0.0 to 1.0.  Values outside this range 

increase or decrease the relectivity accordingly.

 

 Ks spectral file.rfl factor

 

 The "Ks spectral" statement specifies the specular reflectivity using a 

spectral curve.

 

 "file.rfl" is the name of the .rfl file.

 "factor" is an optional argument.

 "factor" is a multiplier for the values in the .rfl file and defaults 

to 1.0, if not specified.

 

 Ks xyz x y z

 

 The "Ks xyz" statement specifies the specular reflectivity using CIEXYZ 

values.

 

 "x y z" are the values of the CIEXYZ color space.  The y and z 

arguments are optional.  If only x is specified, then y and z are 

assumed to be equal to x.  The x y z values are normally in the range of 

0 to 1.  Values outside this range increase or decrease the reflectivity 

accordingly.

 

 

  Tf r g b

  Tf spectral file.rfl factor

  Tf xyz x y z

 

 To specify the transmission filter of the current material, you can use 

the "Tf" statement, the "Tf spectral" statement, or the "Tf xyz" 

statement.

 

 Any light passing through the object is filtered by the transmission 

filter, which only allows the specifiec colors to pass through.  For 

example, Tf 0 1 0 allows all the green to pass through and filters out 

all the red and blue.

 

 Tip These statements are mutually exclusive.  They cannot be used 

concurrently in the same material.

 

 Tf r g b

 

 The Tf statement specifies the transmission filter using RGB values.

 

 "r g b" are the values for the red, green, and blue components of the 

atmosphere.  The g and b arguments are optional.  If only r is 

specified, then g, and b are assumed to be equal to r.  The r g b values 

are normally in the range of 0.0 to 1.0.  Values outside this range 

increase or decrease the relectivity accordingly.

 

 Tf spectral file.rfl factor

 

 The "Tf spectral" statement specifies the transmission filterusing a 

spectral curve.

 

 "file.rfl" is the name of the .rfl file.

 "factor" is an optional argument.

 "factor" is a multiplier for the values in the .rfl file and defaults 

to 1.0, if not specified.

 

 Tf xyz x y z

 

 The "Ks xyz" statement specifies the specular reflectivity using CIEXYZ 

values.

 

 "x y z" are the values of the CIEXYZ color space.  The y and z 

arguments are optional.  If only x is specified, then y and z are 

assumed to be equal to x.  The x y z values are normally in the range of 

0 to 1.  Values outside this range will increase or decrease the 

intensity of the light transmission accordingly.

 

 

 illum illum_#

 

 The "illum" statement specifies the illumination model to use in the 

material.  Illumination models are mathematical equations that represent 

various material lighting and shading effects.

 

 "illum_#"can be a number from 0 to 10.  The illumination models are 

summarized below; for complete descriptions see "Illumination models" on 

page 5-30.

 

 Illumination    Properties that are turned on in the 

 model           Property Editor

 

 0 Color on and Ambient off

 1 Color on and Ambient on

 2 Highlight on

 3 Reflection on and Ray trace on

 4 Transparency: Glass on

  Reflection: Ray trace on

 5 Reflection: Fresnel on and Ray trace on

 6 Transparency: Refraction on

  Reflection: Fresnel off and Ray trace on

 7 Transparency: Refraction on

  Reflection: Fresnel on and Ray trace on

 8 Reflection on and Ray trace off

 9 Transparency: Glass on

  Reflection: Ray trace off

 10 Casts shadows onto invisible surfaces

 

 

 d factor

 

 Specifies the dissolve for the current material.

 

 "factor" is the amount this material dissolves into the background.  A 

factor of 1.0 is fully opaque.  This is the default when a new material 

is created.  A factor of 0.0 is fully dissolved (completely 

transparent).

 

 Unlike a real transparent material, the dissolve does not depend upon 

material thickness nor does it have any spectral character.  Dissolve 

works on all illumination models.

 

 d -halo factor

 

 Specifies that a dissolve is dependent on the surface orientation 

relative to the viewer.  For example, a sphere with the following 

dissolve, d -halo 0.0, will be fully dissolved at its center and will 

appear gradually more opaque toward its edge.

 

 "factor" is the minimum amount of dissolve applied to the material.  

The amount of dissolve will vary between 1.0 (fully opaque) and the 

specified "factor".  The formula is:

 

 dissolve = 1.0 - (N*v)(1.0-factor)

 

 For a definition of terms, see "Illumination models" on page 5-30.

 

 

 Ns exponent

 

 Specifies the specular exponent for the current material.  This defines 

the focus of the specular highlight.

 

 "exponent" is the value for the specular exponent.  A high exponent 

results in a tight, concentrated highlight.  Ns values normally range 

from 0 to 1000.

 

 

 sharpness value

 

 Specifies the sharpness of the reflections from the local reflection 

map.  If a material does not have a local reflection map defined in its 

material definition, sharpness will apply to the global reflection map 

defined in PreView.

 

 "value" can be a number from 0 to 1000.  The default is 60.  A high 

value results in a clear reflection of objects in the reflection map.

 

 Tip Sharpness values greater than 100 map introduce aliasing effects 

in flat surfaces that are viewed at a sharp angle

 

 

 Ni optical_density

 

 Specifies the optical density for the surface.  This is also known as 

index of refraction.

 

 "optical_density" is the value for the optical density.  The values can 

range from 0.001 to 10.  A value of 1.0 means that light does not bend 

as it passes through an object.  Increasing the optical_density 

increases the amount of bending.  Glass has an index of refraction of 

about 1.5.  Values of less than 1.0 produce bizarre results and are not 

recommended.

 

 

 Material texture map

 

 Texture map statements modify the material parameters of a surface by 

associating an image or texture file with material parameters that can 

be mapped.  By modifying existing parameters instead of replacing them, 

texture maps provide great flexibility in changing the appearance of an 

object's surface.

 

 Image files and texture files can be used interchangeably.  If you use 

an image file, that file is converted to a texture in memory and is 

discarded after rendering.

 

 Tip Using images instead of textures saves disk space and setup time, 

however, it introduces a small computational cost at the beginning of a 

render.

 

 The material parameters that can be modified by a texture map are:

 

 - Ka (color)

 - Kd (color)

 - Ks (color)

 - Ns (scalar)

 - d (scalar)

 

 In addition to the material parameters, the surface normal can be 

modified.

 

 

 Image file types

 

 You can link any image file type that is currently supported.  

Supported image file types are listed in the chapter "About Image" in 

the "Advanced Visualizer User's Guide".  You can also use the "im_info -

a" command to list Image file types, among other things.

 

 

 Texture file types

 

 The texture file types you can use are:

 

 - mip-mapped texture files (.mpc, .mps, .mpb)

 - compiled procedural texture files (.cxc, .cxs, .cxb)

 

 

 Mip-mapped texture files

 

 Mip-mapped texture files are created from images using the Create 

Textures panel in the Director or the "texture2D" program.  There are 

three types of texture files:

 

 - color texture files (.mpc)

 - scalar texture files (.mps)

 - bump texture files (.mpb)

 

 Color textures.  Color texture files are designated by an extension of 

".mpc" in the filename, such as "chrome.mpc".  Color textures modify the 

material color as follows:

 

 - Ka - material ambient is multiplied by the texture value

 - Kd - material diffuse is multiplied by the texture value

 - Ks - material specular is multiplied by the texture value

 

 Scalar textures.  Scalar texture files are designated by an extension 

of ".mps" in the filename, such as "wisp.mps".  Scalar textures modify 

the material scalar values as follows:

 

 - Ns - material specular exponent is multiplied by the texture value

 - d - material dissolve is multiplied by the texture value

 - decal - uses a scalar value to deform the surface of an object to 

create surface roughness

 

 Bump textures.  Bump texture files are designated by an extension of 

".mpb" in the filename, such as "sand.mpb".  Bump textures modify 

surface normals.  The image used for a bump texture represents the 

topology or height of the surface relative to the average surface.  Dark 

areas are depressions and light areas are high points.  The effect is 

like embossing the surface with the texture.

 

 

 Procedural texture files

 

 Procedural texture files use mathematical formulas to calculate sample 

values of the texture.  The procedural texture file is compiled, stored, 

and accessed by the Image program when rendering.  for more information 

see chapter 9, "Procedural Texture Files (.cxc, .cxb. and .cxs)".

 

 Syntax

 

 The following syntax describes the texture map statements that apply to 

.mtl files.  These statements can be used alone or with any combination 

of options.  The options and their arguments are inserted between the 

keyword and the "filename".

 

 map_Ka -options args filename

 

 Specifies that a color texture file or a color procedural texture file 

is applied to the ambient reflectivity of the material.  During 

rendering, the "map_Ka" value is multiplied by the "Ka" value.

 

 "filename" is the name of a color texture file (.mpc), a color 

procedural texture file (.cxc), or an image file.

 

 Tip To make sure that the texture retains its original look, use the 

.rfl file "ident" as the underlying material.  This applies to the 

"map_Ka", "map_Kd", and "map_Ks" statements.  For more information on 

.rfl files, see chapter 8, "Spectral Curve File (.rfl)".

 

 The options for the "map_Ka" statement are listed below.  These options 

are described in detail in "Options for texture map statements" on page 

5-18.

 

  -blendu on | off

  -blendv on | off

  -cc on | off

  -clamp on | off

  -mm base gain

  -o u v w

  -s u v w

  -t u v w

  -texres value

 

 

 map_Kd -options args filename

 

 Specifies that a color texture file or color procedural texture file is 

linked to the diffuse reflectivity of the material.  During rendering, 

the map_Kd value is multiplied by the Kd value.

 

 "filename" is the name of a color texture file (.mpc), a color 

procedural texture file (.cxc), or an image file.

 

 The options for the map_Kd statement are listed below.  These options 

are described in detail in "Options for texture map statements" on page 

5-18.

 

  -blendu on | off

  -blendv on | off

  -cc on | off

  -clamp on | off

  -mm base gain

  -o u v w

  -s u v w

  -t u v w

  -texres value

 

 

 map_Ks -options args filename

 

 Specifies that a color texture file or color procedural texture file is 

linked to the specular reflectivity of the material.  During rendering, 

the map_Ks value is multiplied by the Ks value.

 

 "filename" is the name of a color texture file (.mpc), a color 

procedural texture file (.cxc), or an image file.

 

 The options for the map_Ks statement are listed below.  These options 

are described in detail in "Options for texture map statements" on page 

5-18.

 

  -blendu on | off

  -blendv on | off

  -cc on | off

  -clamp on | off

  -mm base gain

  -o u v w

  -s u v w

  -t u v w

  -texres value

 

 

 map_Ns -options args filename

 

 Specifies that a scalar texture file or scalar procedural texture file 

is linked to the specular exponent of the material.  During rendering, 

the map_Ns value is multiplied by the Ns value.

 

 "filename" is the name of a scalar texture file (.mps), a scalar 

procedural texture file (.cxs), or an image file.

 

 The options for the map_Ns statement are listed below.  These options 

are described in detail in "Options for texture map statements" on page 

5-18.

 

  -blendu on | off

  -blendv on | off

  -clamp on | off

  -imfchan r | g | b | m | l | z

  -mm base gain

  -o u v w

  -s u v w

  -t u v w

  -texres value

 

 

 map_d -options args filename

 

 Specifies that a scalar texture file or scalar procedural texture file 

is linked to the dissolve of the material.  During rendering, the map_d 

value is multiplied by the d value.

 

 "filename" is the name of a scalar texture file (.mps), a scalar 

procedural texture file (.cxs), or an image file.

 

 The options for the map_d statement are listed below.  These options 

are described in detail in "Options for texture map statements" on page 

5-18.

 

  -blendu on | off

  -blendv on | off

  -clamp on | off

  -imfchan r | g | b | m | l | z

  -mm base gain

  -o u v w

  -s u v w

  -t u v w

  -texres value

 

 

 map_aat on

 

 Turns on anti-aliasing of textures in this material without anti-

aliasing all textures in the scene.

 

 If you wish to selectively anti-alias textures, first insert this 

statement in the material file.  Then, when rendering with the Image 

panel, choose the anti-alias settings:  "shadows", "reflections 

polygons", or "polygons only".  If using Image from the command line, 

use the -aa or -os options.  Do not use the -aat option.

 

 Image will anti-alias all textures in materials with the map_aat on 

statement, using the oversampling level you choose when you run Image.  

Textures in other materials will not be oversampled.

 

 You cannot set a different oversampling level individually for each 

material, nor can you anti-alias some textures in a material and not 

others.  To anti-alias all textures in all materials, use the -aat 

option from the Image command line.  If a material with "map_aat on" 

includes a reflection map, all textures in that reflection map will be 

anti-aliased as well.

 

 You will not see the effects of map_aat in the Property Editor.

 

 Tip Some .mpc textures map exhibit undesirable effects around the 

edges of smoothed objects.  The "map_aat" statement will correct this.

 

 

 decal -options args filename

 

 Specifies that a scalar texture file or a scalar procedural texture 

file is used to selectively replace the material color with the texture 

color.

 

 "filename" is the name of a scalar texture file (.mps), a scalar 

procedural texture file (.cxs), or an image file.

 

 During rendering, the Ka, Kd, and Ks values and the map_Ka, map_Kd, and 

map_Ks values are blended according to the following formula:

 

 result_color=tex_color(tv)*decal(tv)+mtl_color*(1.0-decal(tv))

 

 where tv is the texture vertex.

 

 "result_color" is the blended Ka, Kd, and Ks values.

 

 The options for the decal statement are listed below.  These options 

are described in detail in "Options for texture map statements" on page 

5-18.

 

  -blendu on | off

  -blendv on | off

  -clamp on | off

  -imfchan r | g | b | m | l | z

  -mm base gain

  -o u v w

  -s u v w

  -t u v w

  -texres value

 

 

 disp -options args filename

 

 Specifies that a scalar texture is used to deform the surface of an 

object, creating surface roughness.

 

 "filename" is the name of a scalar texture file (.mps), a bump 

procedural texture file (.cxb), or an image file.

 

 The options for the disp statement are listed below.  These options are 

described in detail in "Options for texture map statements" on page 5-

18.

 

  -blendu on | off

  -blendv on | off

  -clamp on | off

  -imfchan r | g | b | m | l | z

  -mm base gain

  -o u v w

  -s u v w

  -t u v w

  -texres value

 

 

 bump -options args filename

 

 Specifies that a bump texture file or a bump procedural texture file is 

linked to the material.

 

 "filename" is the name of a bump texture file (.mpb), a bump procedural 

texture file (.cxb), or an image file.

 

 The options for the bump statement are listed below.  These options are 

described in detail in "Options for texture map statements" on page 5-

18.

 

  -bm mult

  -clamp on | off

  -blendu on | off

  -blendv on | off

  -imfchan r | g | b | m | l | z

  -mm base gain

  -o u v w

  -s u v w

  -t u v w

  -texres value

 

 

 Options for texture map statements

 

 The following options and arguments can be used to modify the texture 

map statements.

 

 -blenu on | off

 

 The -blendu option turns texture blending in the horizontal direction 

(u direction) on or off.  The default is on.

 

 -blenv on | off

 

 The -blendv option turns texture blending in the vertical direction (v 

direction) on or off.  The default is on.

 

 -bm mult

 

 The -bm option specifies a bump multiplier.  You can use it only with 

the "bump" statement.  Values stored with the texture or procedural 

texture file are multiplied by this value before they are applied to the 

surface.

 

 "mult" is the value for the bump multiplier.  It can be positive or 

negative.  Extreme bump multipliers may cause odd visual results because 

only the surface normal is perturbed and the surface position does not 

change.  For best results, use values between 0 and 1.

 

 -boost value

 

 The -boost option increases the sharpness, or clarity, of mip-mapped 

texture files -- that is, color (.mpc), scalar (.mps), and bump (.mpb) 

files.  If you render animations with boost, you may experience some 

texture crawling.  The effects of boost are seen when you render in 

Image or test render in Model or PreView; they aren't as noticeable in 

Property Editor.

 

 "value" is any non-negative floating point value representing the 

degree of increased clarity; the greater the value, the greater the 

clarity.  You should start with a boost value of no more than 1 or 2 and 

increase the value as needed.  Note that larger values have more 

potential to introduce texture crawling when animated.

 

 -cc on | off

 

 The -cc option turns on color correction for the texture.  You can use 

it only with the color map statements:  map_Ka, map_Kd, and map_Ks.

 

 -clamp on | off

 

 The -clamp option turns clamping on or off.  When clamping is on, 

textures are restricted to 0-1 in the uvw range.  The default is off.

 

 When clamping is turned on, one copy of the texture is mapped onto the 

surface, rather than repeating copies of the original texture across the 

surface of a polygon, which is the default.  Outside of the origin 

texture, the underlying material is unchanged.

 

 A postage stamp on an envelope or a label on a can of soup is an 

example of a texture with clamping turned on.  A tile floor or a 

sidewalk is an example of a texture with clamping turned off.

 

 Two-dimensional textures are clamped in the u and v dimensions; 3D 

procedural textures are clamped in the u, v, and w dimensions.

 

 -imfchan r | g | b | m | l | z

 

 The -imfchan option specifies the channel used to create a scalar or 

bump texture.  Scalar textures are applied to:

 

 transparency

 specular exponent

 decal

 displacement

 

 The channel choices are:

 

 r specifies the red channel.

 g specifies the green channel.

 b specifies the blue channel.

 m specifies the matte channel.

 l specifies the luminance channel.

 z specifies the z-depth channel.

  

 The default for bump and scalar textures is "l" (luminance), unless you 

are building a decal.  In that case, the default is "m" (matte).

 

 -mm base gain

 

 The -mm option modifies the range over which scalar or color texture 

values may vary.  This has an effect only during rendering and does not 

change the file.

 

 "base" adds a base value to the texture values.  A positive value makes 

everything brighter; a negative value makes everything dimmer.  The 

default is 0; the range is unlimited.

 

 "gain" expands the range of the texture values.  Increasing the number 

increases the contrast.  The default is 1; the range is unlimited.

 

 -o u v w

 

 The -o option offsets the position of the texture map on the surface by 

shifting the position of the map origin.  The default is 0, 0, 0.

 

 "u" is the value for the horizontal direction of the texture

 

 "v" is an optional argument.

 "v" is the value for the vertical direction of the texture.

 

 "w" is an optional argument.

 "w" is the value used for the depth of a 3D texture.

 

 -s u v w

 

 The -s option scales the size of the texture pattern on the textured 

surface by expanding or shrinking the pattern.  The default is 1, 1, 1.

 

 "u" is the value for the horizontal direction of the texture

 

 "v" is an optional argument.

 "v" is the value for the vertical direction of the texture.

 

 "w" is an optional argument.

 "w" is a value used for the depth of a 3D texture.

 "w" is a value used for the amount of tessellation of the displacement 

map.

 

 -t u v w

 

 The -t option turns on turbulence for textures.  Adding turbulence to a 

texture along a specified direction adds variance to the original image 

and allows a simple image to be repeated over a larger area without 

noticeable tiling effects.

 

 turbulence also lets you use a 2D image as if it were a solid texture, 

similar to 3D procedural textures like marble and granite.

 

 "u" is the value for the horizontal direction of the texture 

turbulence.

 

 "v" is an optional argument.

 "v" is the value for the vertical direction of the texture turbulence.

 

 "w" is an optional argument.

 "w" is a value used for the depth of the texture turbulence.

 

 By default, the turbulence for every texture map used in a material is 

uvw = (0,0,0).  This means that no turbulence will be applied and the 2D 

texture will behave normally.

 

 Only when you raise the turbulence values above zero will you see the 

effects of turbulence.

 

 -texres resolution

 

 The -texres option specifies the resolution of texture created when an 

image is used.  The default texture size is the largest power of two 

that does not exceed the original image size.

 

 If the source image is an exact power of 2, the texture cannot be built 

any larger.  If the source image size is not an exact power of 2, you 

can specify that the texture be built at the next power of 2 greater 

than the source image size.

 

 The original image should be square, otherwise, it will be scaled to 

fit the closest square size that is not larger than the original.  

Scaling reduces sharpness.

 

 

 Material reflection map

 

 A reflection map is an environment that simulates reflections in 

specified objects.  The environment is represented by a color texture 

file or procedural texture file that is mapped on the inside of an 

infinitely large, space.  Reflection maps can be spherical or cubic.  A 

spherical reflection map requires only one texture or image file, while 

a cubic reflection map requires six.

 

 Each material description can contain one reflection map statement that 

specifies a color texture file or a color procedural texture file to 

represent the environment.  The material itself must be assigned an 

illumination model of 3 or greater.

 

 The reflection map statement in the .mtl file defines a local 

reflection map.  That is, each material assigned to an object in a scene 

can have an individual reflection map.  In PreView, you can assign a 

global reflection map to an object and specify the orientation of the 

reflection map.  Rotating the reflection map creates the effect of 

animating reflections independently of object motion.  When you replace 

a global reflection map with a local reflection map, the local 

reflection map inherits the transformation of the global reflection map.

 

 Syntax

 

 The following syntax statements describe the reflection map statement 

for .mtl files.

 

 refl -type sphere -options -args filename

 

 Specifies an infinitely large sphere that casts reflections onto the 

material.  You specify one texture file.

 

 "filename" is the color texture file, color procedural texture file, or 

image file that will be mapped onto the inside of the shape.

 

 refl -type cube_side -options -args filenames

 

 Specifies an infinitely large sphere that casts reflections onto the 

material.  You can specify different texture files for the "top", 

"bottom", "front", "back", "left", and "right" with the following 

statements:

 

 refl -type cube_top

 refl -type cube_bottom

 refl -type cube_front

 refl -type cube_back

 refl -type cube_left

 refl -type cube_right

 

 "filenames" are the color texture files, color procedural texture 

files, or image files that will be mapped onto the inside of the shape.

 

 The "refl" statements for sphere and cube can be used alone or with 

 any combination of the following options.  The options and their 

arguments are inserted between "refl" and "filename".

 

 -blendu on | off

 -blendv on | off

 -cc on | off

 -clamp on | off

 -mm base gain

 -o u v w

 -s u v w

 -t u v w

 -texres value

 

 The options for the reflection map statement are described in detail in 

"Options for texture map statements" on page 18.

 

 

 Examples

 

 1  Neon green

 

 This is a bright green material.  When applied to an object, it will 

remain bright green regardless of any lighting in the scene.

 

 newmtl neon_green

 Kd 0.0000 1.0000 0.0000

 illum 0

 

 2  Flat green

 

 This is a flat green material.

 

 newmtl flat_green

 Ka 0.0000 1.0000 0.0000

 Kd 0.0000 1.0000 0.0000

 illum 1

 

 3  Dissolved green

 

 This is a flat green, partially dissolved material.

 

 newmtl diss_green

 Ka 0.0000 1.0000 0.0000

 Kd 0.0000 1.0000 0.0000

 d 0.8000

 illum 1

 

 4  Shiny green

 

 This is a shiny green material.  When applied to an object, it shows a 

white specular highlight.

 

 newmtl shiny_green

 Ka 0.0000 1.0000 0.0000

 Kd 0.0000 1.0000 0.0000

 Ks 1.0000 1.0000 1.0000

 Ns 200.0000

 illum 1

 

 5  Green mirror

 

 This is a reflective green material.  When applied to an object, it 

reflects other objects in the same scene.

 

 newmtl green_mirror

 Ka 0.0000 1.0000 0.0000

 Kd 0.0000 1.0000 0.0000

 Ks 0.0000 1.0000 0.0000

 Ns 200.0000

 illum 3

 

 6  Fake windshield

 

 This material approximates a glass surface.  Is it almost completely 

transparent, but it shows reflections of other objects in the scene.  It 

will not distort the image of objects seen through the material.

 

 newmtl fake_windsh

 Ka 0.0000 0.0000 0.0000

 Kd 0.0000 0.0000 0.0000

 Ks 0.9000 0.9000 0.9000

 d 0.1000

 Ns 200

 illum 4

 

 7  Fresnel blue

 

 This material exhibits an effect known as Fresnel reflection.  When 

applied to an object, white fringes may appear where the object's 

surface is viewed at a glancing angle.

 

 newmtl fresnel_blu

 Ka 0.0000 0.0000 0.0000

 Kd 0.0000 0.0000 0.0000

 Ks 0.6180 0.8760 0.1430

 Ns 200

 illum 5

 

 8  Real windshield

 

 This material accurately represents a glass surface.  It filters of 

colorizes objects that are seen through it.  Filtering is done according 

to the transmission color of the material.  The material also distorts 

the image of objects according to its optical density.  Note that the 

material is not dissolved and that its ambient, diffuse, and specular 

reflective colors have been set to black.  Only the transmission color 

is non-black.

 

 newmtl real_windsh

 Ka 0.0000 0.0000 0.0000

 Kd 0.0000 0.0000 0.0000

 Ks 0.0000 0.0000 0.0000

 Tf 1.0000 1.0000 1.0000

 Ns 200

 Ni 1.2000

 illum 6

 

 9  Fresnel windshield

 

 This material combines the effects in examples 7 and 8.

 

 newmtl fresnel_win

 Ka 0.0000 0.0000 1.0000

 Kd 0.0000 0.0000 1.0000

 Ks 0.6180 0.8760 0.1430

 Tf 1.0000 1.0000 1.0000

 Ns 200

 Ni 1.2000

 illum 7

 

 10  Tin

 

 This material is based on spectral reflectance samples taken from an 

actual piece of tin.  These samples are stored in a separate .rfl file 

that is referred to by name in the material.  Spectral sample files 

(.rfl) can be used in any type of material as an alternative to RGB 

values.

 

 newmtl tin

 Ka spectral tin.rfl

 Kd spectral tin.rfl

 Ks spectral tin.rfl

 Ns 200

 illum 3

 

 11  Pine Wood

 

 This material includes a texture map of a pine pattern.  The material 

color is set to "ident" to preserve the texture's true color.  When 

applied to an object, this texture map will affect only the ambient and 

diffuse regions of that object's surface.

 

 The color information for the texture is stored in a separate .mpc file 

that is referred to in the material by its name, "pine.mpc".  If you use 

different .mpc files for ambient and diffuse, you will get unrealistic 

results.

 

 newmtl pine_wood

 Ka spectral ident.rfl 1

 Kd spectral ident.rfl 1

 illum 1

 map_Ka pine.mpc

 map_Kd pine.mpc

 

 12  Bumpy leather

 

 This material includes a texture map of a leather pattern.  The 

material color is set to "ident" to preserve the texture's true color.  

When applied to an object, it affects both the color of the object's 

surface and its apparent bumpiness.

 

 The color information for the texture is stored in a separate .mpc file 

that is referred to in the material by its name, "brown.mpc".  The bump 

information is stored in a separate .mpb file that is referred to in the 

material by its name, "leath.mpb".  The -bm option is used to raise the 

apparent height of the leather bumps.

 

 newmtl bumpy_leath

 Ka spectral ident.rfl 1

 Kd spectral ident.rfl 1

 Ks spectral ident.rfl 1

 illum 2

 map_Ka brown.mpc

 map_Kd brown.mpc

 map_Ks brown.mpc

 bump -bm 2.000 leath.mpb

 

 13  Frosted window

 

 This material includes a texture map used to alter the opacity of an 

object's surface.  The material color is set to "ident" to preserve the 

texture's true color.  When applied to an object, the object becomes 

transparent in certain areas and opaque in others.

 

 The variation between opaque and transparent regions is controlled by 

scalar information stored in a separate .mps file that is referred to in 

the material by its name, "window.mps".  The "-mm" option is used to 

shift and compress the range of opacity.

 

 newmtl frost_wind

 Ka 0.2 0.2 0.2

 Kd 0.6 0.6 0.6

 Ks 0.1 0.1 0.1

 d 1

 Ns 200

 illum 2

 map_d -mm 0.200 0.800 window.mps

 

 14  Shifted logo

 

 This material includes a texture map which illustrates how a texture's 

origin may be shifted left/right (the "u" direction) or up/down (the "v" 

direction).  The material color is set to "ident" to preserve the 

texture's true color.

 

 In this example, the original image of the logo is off-center to the 

left.  To compensate, the texture's origin is shifted back to the right 

(the positive "u" direction) using the "-o" option to modify the origin.

 

 Ka spectral ident.rfl 1

 Kd spectral ident.rfl 1

 Ks spectral ident.rfl 1

 illum 2

 map_Ka -o 0.200 0.000 0.000 logo.mpc

 map_Kd -o 0.200 0.000 0.000 logo.mpc

 map_Ks -o 0.200 0.000 0.000 logo.mpc

 

 15  Scaled logo

 

 This material includes a texture map showing how a texture may be 

scaled left or right (in the "u" direction) or up and down (in the "v" 

direction).  The material color is set to "ident" to preserve the 

texture's true color.

 

 In this example, the original image of the logo is too small.  To 

compensate, the texture is scaled slightly to the right (in the positive 

"u" direction) and up (in the positive "v" direction) using the "-s" 

option to modify the scale.

 

 Ka spectral ident.rfl 1

 Kd spectral ident.rfl 1

 Ks spectral ident.rfl 1

 illum 2

 map_Ka -s 1.200 1.200 0.000 logo.mpc

 map_Kd -s 1.200 1.200 0.000 logo.mpc

 map_Ks -s 1.200 1.200 0.000 logo.mpc

 

 16  Chrome with spherical reflection map

 

 This illustrates a common use for local reflection maps (defined in a 

material).

 

 this material is highly reflective with no diffuse or ambient 

contribution.  Its reflection map is an image with silver streaks that 

yields a chrome appearance when viewed as a reflection.

 

 ka 0 0 0

 kd 0 0 0

 ks .7 .7 .7

 illum 1

 refl -type sphere chrome.rla

 

 

 Illumination models

 

 The following list defines the terms and vectors that are used in the 

illumination model equations:

 

 Term Definition

 

 Ft Fresnel reflectance

 Ft Fresnel transmittance

 Ia ambient light

 I light intensity

 Ir intensity from reflected direction

  (reflection map and/or ray tracing)

 It intensity from transmitted direction

 Ka ambient reflectance

 Kd diffuse reflectance

 Ks specular reflectance

 Tf transmission filter

 

 Vector Definition

 

 H unit vector bisector between L and V

 L unit light vector

 N unit surface normal

 V unit view vector

 

 The illumination models are:

 

 0  This is a constant color illumination model.  The color is the 

specified Kd for the material.  The formula is:

 

   color = Kd

 

 1  This is a diffuse illumination model using Lambertian shading. The 

color includes an ambient constant term and a diffuse shading term for 

each light source.  The formula is

 

   color = KaIa + Kd { SUM j=1..ls, (N * Lj)Ij }

 

 2  This is a diffuse and specular illumination model using Lambertian 

shading and Blinn's interpretation of Phong's specular illumination 

model (BLIN77).  The color includes an ambient constant term, and a 

diffuse and specular shading term for each light source.  The formula 

is:

 

   color = KaIa 

  + Kd { SUM j=1..ls, (N*Lj)Ij }

  + Ks { SUM j=1..ls, ((H*Hj)^Ns)Ij }

 

 3  This is a diffuse and specular illumination model with reflection 

using Lambertian shading, Blinn's interpretation of Phong's specular 

illumination model (BLIN77), and a reflection term similar to that in 

Whitted's illumination model (WHIT80).  The color includes an ambient 

constant term and a diffuse and specular shading term for each light 

source.  The formula is:

 

   color = KaIa

  + Kd { SUM j=1..ls, (N*Lj)Ij }

  + Ks ({ SUM j=1..ls, ((H*Hj)^Ns)Ij } + Ir)

 

   Ir = (intensity of reflection map) + (ray trace)

 

 4  The diffuse and specular illumination model used to simulate glass 

is the same as illumination model 3.  When using a very low dissolve 

(approximately 0.1), specular highlights from lights or reflections 

become imperceptible.

 

 Simulating glass requires an almost transparent object that still 

reflects strong highlights.  The maximum of the average intensity of 

highlights and reflected lights is used to adjust the dissolve factor.  

The formula is:

 

   color = KaIa

  + Kd { SUM j=1..ls, (N*Lj)Ij }

  + Ks ({ SUM j=1..ls, ((H*Hj)^Ns)Ij } + Ir)

 

 5  This is a diffuse and specular shading models similar to 

illumination model 3, except that reflection due to Fresnel effects is 

introduced into the equation.  Fresnel reflection results from light 

striking a diffuse surface at a grazing or glancing angle.  When light 

reflects at a grazing angle, the Ks value approaches 1.0 for all color 

samples.  The formula is:

 

   color = KaIa

  + Kd { SUM j=1..ls, (N*Lj)Ij }

  + Ks ({ SUM j=1..ls, ((H*Hj)^Ns)Ij Fr(Lj*Hj,Ks,Ns)Ij} + 

Fr(N*V,Ks,Ns)Ir})

 

 

 6  This is a diffuse and specular illumination model similar to that 

used by Whitted (WHIT80) that allows rays to refract through a surface.  

The amount of refraction is based on optical density (Ni).  The 

intensity of light that refracts is equal to 1.0 minus the value of Ks, 

and the resulting light is filtered by Tf (transmission filter) as it 

passes through the object.  The formula is:

 

   color = KaIa

  + Kd { SUM j=1..ls, (N*Lj)Ij }

  + Ks ({ SUM j=1..ls, ((H*Hj)^Ns)Ij } + Ir)

  + (1.0 - Ks) TfIt

 

 7  This illumination model is similar to illumination model 6, except 

that reflection and transmission due to Fresnel effects has been 

introduced to the equation.  At grazing angles, more light is reflected 

and less light is refracted through the object.  The formula is:

 

   color = KaIa

  + Kd { SUM j=1..ls, (N*Lj)Ij }

  + Ks ({ SUM j=1..ls, ((H*Hj)^Ns)Ij Fr(Lj*Hj,Ks,Ns)Ij} + 

Fr(N*V,Ks,Ns)Ir})

 

  + (1.0 - Kx)Ft (N*V,(1.0-Ks),Ns)TfIt

 

 8  This illumination model is similar to illumination model 3 without 

ray tracing.  The formula is:

 

   color = KaIa

  + Kd { SUM j=1..ls, (N*Lj)Ij }

  + Ks ({ SUM j=1..ls, ((H*Hj)^Ns)Ij } + Ir)

 

   Ir = (intensity of reflection map)

 

 9  This illumination model is similar to illumination model 4without 

ray tracing.  The formula is:

 

 

   color = KaIa

  + Kd { SUM j=1..ls, (N*Lj)Ij }

  + Ks ({ SUM j=1..ls, ((H*Hj)^Ns)Ij } + Ir)

 

   Ir = (intensity of reflection map)

 

 10  This illumination model is used to cast shadows onto an invisible 

surface.  This is most useful when compositing computer-generated 

imagery onto live action, since it allows shadows from rendered objects 

to be composited directly on top of video-grabbed images.  The equation 

for computation of a shadowmatte is formulated as follows.

 

 color = Pixel color.  The pixel color of a shadowmatte material is 

always black.

 

 color = black

 

 M = Matte channel value.  This is the image channel which typically 

represents the opacity of the point on the surface.  To store the shadow 

in the matte channel of the image, it is calculated as:

 

 M = 1 - W / P

 

 where:

 

 P = Unweighted sum.  This is the sum of all S values for each light:

 

 P = S1 + S2 + S3 + .....

 

 W = Weighted sum.  This is the sum of all S values, each weighted by 

the visibility factor (Q) for the light:

 

 W = (S1 * Q1) + (S2 * Q2) + .....

 

 Q = Visibility factor.  This is the amount of light from a particular 

light source that reaches the point to be shaded, after traveling 

through all shadow objects between the light and the point on the 

surface.  Q = 0 means no light reached the point to be shaded; it was 

blocked by shadow objects, thus casting a shadow.  Q = 1 means that 

nothing blocked the light, and no shadow was cast.  0 < Q < 1 means that 

the light was partially blocked by objects that were partially 

dissolved.

 

 S = Summed brightness.  This is the sum of the spectral sample 

intensities for a particular light.  The samples are variable, but the 

default is 3:

 

 S = samp1 + samp2 + samp3.  



'Graphics' 카테고리의 다른 글

obj format  (0) 2018.12.27
OBJ 포멧 MTL 포멧 간단정리  (0) 2018.11.19
조명  (0) 2018.11.19
Comments